Approximate the real zeros of f(x)=2x^4-x^3+x-2 to the nearest tenth. a. , 1 c. 0, 1 b. , d. , 0 Please select the best answer from the choices provided

Respuesta :

ANSWER

-1.0, 1.0

EXPLANATION

The given polynomial function is

[tex]f(x) = 2 {x}^{4} - {x}^{3} + x - 2[/tex]

According to the Rational Roots Theorem, the possible roots of this function are;

[tex] \pm1,\pm \frac{1}{2} [/tex]

We now use the Remainnder Theorem to obtain;

[tex]f(1) = 2 {(1)}^{4} - {(1)}^{3} + 1 - 2[/tex]

[tex]f(1) = 2 - 1+ 1 - 2 = 0[/tex]

[tex]f( - 1) = 2 {( - 1)}^{4} - {( - 1)}^{3} - 1 - 2[/tex]

[tex]f( - 1) = 2 + 1 - 1 - 2 = 0[/tex]

But;

[tex]f( \frac{1}{2} ) = - 1.5[/tex]

[tex]f( - \frac{1}{2} ) = - 2.25[/tex]

Since f(1)=0 and f(-1)=0, the real zeros to the nearest tenth are:

-1.0 and 1.0

Answer:

D

Step-by-step explanation:

Just took the test