For a satellite to be in a circular orbit 590 km above the surface of the earth, what orbital speed must it be given? express your answer with the appropriate units.

Respuesta :

Answer:

7.57 km/s

Explanation:

The gravitational force on the satellite provides the centripetal force that keeps the satellite in circular orbit, so we can write:

[tex]\frac{GMm}{r^2}=m\frac{v^2}{r}[/tex]

where

G is the gravitational constant

[tex]M=5.98\cdot 10^{24}kg[/tex] is the Earth's mass

m is the satellite's mass

r = R+h is the distance of the satellite from the Earth's centre, where:

[tex]R=6371 km=6.37\cdot 10^6 m[/tex] is the Earth's radius,

[tex]h=590 km = 0.59\cdot 10^6 m[/tex] is the altitude of the satellite above Earth

v is the orbital speed of the satellite

Solving the equation for v, we find

[tex]v=\sqrt{\frac{GM}{r}}=\sqrt{\frac{(6.67\cdot 10^{-11} m^3 kg^{-1} s^{-2})(5.98\cdot 10^{24} kg)}{(6.37\cdot 10^6 m+0.59\cdot 10^6 m)}}=7570 m/s=7.57 km/s[/tex]

Otras preguntas