What is the factored form of _________?

Answer:
C
Step-by-step explanation:
The expression given is a difference of cubes and factors as
a³ - b³ = (a - b)(a² + ab + b²)
8[tex]x^{24}[/tex] = (2[tex]x^{8}[/tex])³ ⇒ a = 2[tex]x^{8}[/tex]
27[tex]y^{6}[/tex] = (3y²)³ ⇒ b = 3y²
Hence 2 factors are
(2[tex]x^{8}[/tex] - 3y²) and
((2[tex]x^{8}[/tex])² + (2[tex]x^{8}[/tex] × 3y²) + (3y²)²)
= (4[tex]x^{16}[/tex] + 6[tex]x^{8}[/tex]y² + 9[tex]y^{4}[/tex])
Hence the factored form of the expression is C