Respuesta :

Answer:

The area of the circle is [tex]9\pi \ units^{2}[/tex]

Step-by-step explanation:

we know that

A circle has a sector with area [tex]3\pi/2[/tex]  and central angle of 60 degrees

The area of a complete circle subtends a central angle of [tex]360\°[/tex]

so

using proportion

Find the area of the circle

[tex]\frac{(3\pi/2)}{60} =\frac{x}{360}\\ \\x=(3\pi/2)*360/60\\ \\x=9\pi \ units^{2}[/tex]

Answer:

[tex]A = 9\pi[/tex]

Step-by-step explanation:

The total area of the circle is determine by simple rule of three:

[tex]A = \frac{360^{\textdegree}}{60^{\textdegree}} \cdot \left(\frac{3}{2}\pi\right)[/tex]

[tex]A = 9\pi[/tex]