Respuesta :

ANSWER

[tex]\cos( \theta) = - \frac{5\sqrt{61}}{ 61 } [/tex]

EXPLANATION

The given point is (-5,-6).

This implies that ,

[tex] \tan( \theta) = \frac{6}{5} [/tex]

Hence opposite=6 units and adjacent=5 units.

The hypotenuse is,

[tex] = \sqrt{ {5}^{2} + {6}^{2} } = \sqrt{61} [/tex]

Since the terminal side is in the third quadrant, the cosine ratio is negative.

[tex] \cos( \theta) = - \frac{adjacent}{hypotenuse} [/tex]

[tex]\cos( \theta) = - \frac{5}{ \sqrt{61} } [/tex]

Rationalize the denominator,

[tex]\cos( \theta) = - \frac{5\sqrt{61}}{ 61 } [/tex]

The correct choice is C.