Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the trigonometric identities

• cscx = [tex]\frac{1}{sinx}[/tex]

• cot²x = [tex]\frac{cos^2x}{sin^2x}[/tex], sin²x + cos²x = 1

Consider the left side

cscx - sinx

= [tex]\frac{1}{sinx}[/tex] - sinx

=[tex]\frac{1-sin^2x}{sinx}[/tex]

= [tex]\frac{cos^2x}{sinx}[/tex] × [tex]\frac{sinx}{sinx}[/tex]

= [tex]\frac{cos^2x}{sin^2x}[/tex] × sinx

= cot²x × [tex]\frac{1}{cscx}[/tex]

= [tex]\frac{cot^2x}{cscx}[/tex] = right side ⇒ verified