Respuesta :
Answer:
The value of |f(i)| is √2.
Step-by-step explanation:
The given function is
[tex]f(x)=1-x[/tex]
We need to find the value of |f(i)|.
Substitute x=i in the given function.
[tex]f(i)=1-i[/tex]
Taking modulus on both the sides.
[tex]|f(i)|=|1-i|[/tex]
Using the formula for modulus of a complex number, we get
[tex]|f(i)|=\sqrt{(1)^2+(-1)^2}[/tex] [tex][\because |a+ib|=\sqrt{a^2+b^2}][/tex]
[tex]|f(i)|=\sqrt{1+1}[/tex]
[tex]|f(i)|=\sqrt{2}[/tex]
Therefore the value of |f(i)| is √2.