If M = N, the diameter of M = 148, and AB = 140, what is the length of NQ?

Answer:
[tex]NQ=24\ units[/tex]
Step-by-step explanation:
we know that
Triangles ABM and CDN are congruent
so
CD=AB
AB=2AL ----> because the diameter divide the circle into two equal parts
CQ=AL=140/2=70 units
NC----> is the radius
NC=148/2=74 units ----> the radius is half the diameter
Applying Pythagoras Theorem find the value of NQ
[tex]NC^{2}=NQ^{2}+CQ^{2}[/tex]
substitute the values
[tex]74^{2}=NQ^{2}+70^{2}[/tex]
[tex]NQ^{2}=74^{2}-70^{2}[/tex]
[tex]NQ^{2}=576[/tex]
[tex]NQ=24\ units[/tex]