Respuesta :

The projection of [tex]\vec u[/tex] onto [tex]\vec v[/tex] is

[tex]\mathrm{proj}_{\vec v}(\vec u)=\dfrac{\vec u\cdot\vec v}{\vec v\cdot\vec v}\vec v[/tex]

We have

[tex]\vec u\cdot\vec v=1.6\cdot(-2.1)+3.3\cdot(-0.5)=-5.01[/tex]

[tex]\vec v\cdot\vec v=\|\vec v\|^2=(-2.1)^2+(-0.5)^2=4.66[/tex]

[tex]\implies\mathrm{proj}_{\vec v}(\vec u)=\dfrac{-5.01}{4.66}\vec v\approx2.26\,\vec\imath+0.54\,\vec\jmath[/tex]

Answer:

answer is B i think on edg. 2.3i+0.5j

Step-by-step explanation:

just took the test