Answer:
4.42 s
Explanation:
The frequency of the oscillation is given by the ratio between the number of complete oscillations and the time taken:
[tex]f=\frac{N}{t}[/tex]
where for this glider, we have
N = 7.00
t = 31.0 s
Substituting, we find
[tex]f=\frac{7.00}{31.0 s}=0.226 Hz[/tex]
Now we now that the period of oscillation is the reciprocal of the frequency:
[tex]T=\frac{1}{f}[/tex]
So, substituting f = 0.226 Hz, we find:
[tex]T=\frac{1}{0.226 Hz}=4.42 s[/tex]