Respuesta :

Answer:

5 · a³ · b³ · √5b

Step-by-step explanation:

Start with √(50a^6b^7).  Rewrite 50 as the product of the largest possible perfect square and a multiplier:  50 = 25 · 2.  Then √50 = 5√2.

a^6 is already a perfect square, so find its square root:  √a^6 = a^3.

b^7 = b · b^6, so √b^7 = b^3√b

Now rewrite (50(a^6) (b^7)) as √(50a^6b^7).

Then rewrite √(50a^6b^7) as 5√2 · a³ · b³ · √b.

This latter result can be simplified to 5 · a³ · b³ · √5b

This matches possible answer #1.