Respuesta :

Answer:

(-4, -12) (1, -2) (2, -18)

Step-by-step explanation:

We have a grade 3 polymial function.

We know that the function has a minimum at the point

(-3, -18).

If this is the minimum of the function then this means that when  [tex]x <-3[/tex]  the function is decreasing and when  [tex]x> -3[/tex]  the function is growing.

Look in the table for ordered pairs with values of x less than -3.

The only point is (-4, -12).

Then the function has a maximum in  ([tex]\frac{1}{3}[/tex], [tex]\frac{14}{27}[/tex])

This means that when  [tex]x> \frac{1}{3}[/tex]  the function is decreasing and when  [tex]x< \frac{1}{3}[/tex]  the function is growing.

Search the table for ordered pairs with values of x greater than [tex]\frac{1}{3}[/tex]

We have

(1, -2) (2, -18)

Finally the ordered pairs in which the function decreases are:

(-4, -12) (1, -2) (2, -18)

Observe the attached image.

Ver imagen luisejr77