The following equation is being multiplied by the LCD. Complete the multiplication to eliminate the denominators
x+2/3x - 1/x-2 = x-3/3x

(3x)(x-2) [x+2/3x - 1/x-2] = (3x)(x-2) [x-3/3x]

The resulting equation is

x+2-1 = x-3

3x(x+2)-(x-2) = x-3

(x-2)(x+2)-1 = (x-3)(x-2)

(x-2)(x+2)-3x=(x-2)(x-3)

Respuesta :

Answer:

[tex](x+2)(x-2) -1(3x)=(x-3)(x-2)[/tex]

Step-by-step explanation:

x+2/3x - 1/x-2 = x-3/3x

[tex]\frac{x+2}{3x}-\frac{1}{x-2}=\frac{x-3}{3x}[/tex]

LCD is (3x)(x-2). so we multiply the whole equation by LCD

[tex](3x)(x-2)(\frac{x+2}{3x}-\frac{1}{x-2}=\frac{x-3}{3x})[/tex]

We multiply each term by LCD

[tex](3x)(x-2)(\frac{x+2}{3x})-(3x)(x-2)(\frac{1}{x-2})=(3x)(x-2)(\frac{x-3}{3x})[/tex]

[tex](x+2)(x-2) -1(3x)=(x-3)(x-2)[/tex]

Answer:

(x-2)(x+2)-3x=(x-2)(x-3)

Step-by-step explanation:

on edge2020