Respuesta :
Answer:
y = x² - 10x + 41
Step-by-step explanation:
The standard form of a quadratic is ax² + bx + c : a ≠ 0
Given
y = (x - 5)² + 16 ← expand (x - 5)²
= x² - 10x + 25 + 16
= x² - 10x + 41 ← in standard form
Answer: [tex]y=x^2-10x+41[/tex]
Step-by-step explanation:
The standard form of a quadratic function is:
[tex]y=ax^2+bx+c[/tex]
You need to remember the square of a binomial:
[tex](a-b)^2=a^2-2ab+b^2[/tex]
Applying the above, you get:
[tex]y=(x-5)^2+16[/tex]
[tex]y=(x^2-2(x)(5)+5^2)+16[/tex]
Simplify the expression:
[tex]y=x^2-10x+25+16[/tex]
Now you need to add the like terms.
THerefore, you get:
[tex]y=x^2-10x+41[/tex]