Respuesta :

Answer:

y = x² - 10x + 41

Step-by-step explanation:

The standard form of a quadratic is ax² + bx + c : a ≠ 0

Given

y = (x - 5)² + 16 ← expand (x - 5)²

 = x² - 10x + 25 + 16

 = x² - 10x + 41 ← in standard form

Answer: [tex]y=x^2-10x+41[/tex]

Step-by-step explanation:

The standard form of a quadratic function is:

[tex]y=ax^2+bx+c[/tex]

You need to remember the square of a binomial:

[tex](a-b)^2=a^2-2ab+b^2[/tex]

Applying the above, you get:

[tex]y=(x-5)^2+16[/tex]

[tex]y=(x^2-2(x)(5)+5^2)+16[/tex]

Simplify the expression:

[tex]y=x^2-10x+25+16[/tex]

 Now you need to add the like terms.

THerefore, you get:

[tex]y=x^2-10x+41[/tex]