Respuesta :

Answer:

[tex]\left[\begin{array}{ccc}7\\4\\2\end{array}\right][/tex]

The answer is a single-column matrix (7,4,2)

Step-by-step explanation:

In such multiplication of matrices, you have to proceed by multiplying each ROW of the first matrix by the COLUMN of the second matrix.  So,

[tex]\left[\begin{array}{ccc}3&6&1\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (3 * 2) + (6 * 0) + (1 * 1) = 6 + 0 + 1 = 7[/tex]

then...

[tex]\left[\begin{array}{ccc}2&4&0\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (2 * 2) + (4 * 0) + (0 * 1) = 4 + 0 + 0 = 4[/tex]

and

[tex]\left[\begin{array}{ccc}0&6&2\end{array}\right] * \left[\begin{array}{ccc}2\\0\\1\end{array}\right] = (0 * 2) + (6 * 0) + (2 * 1) = 0 + 0 + 2= 2[/tex]

I hope it helps.