Answer:
Part 1) [tex]v=\frac{m}{d}[/tex]
Part 2) [tex]w=(P-23)/17[/tex]
Step-by-step explanation:
Part 1)
we know that
The density is equal to divide the mass by the volume
so
[tex]d=\frac{m}{v}[/tex]
Solve for the volume v
That means------> isolate the variable v
[tex]d=\frac{m}{v}[/tex]
Multiply by the volume v both sides
[tex]dv=m[/tex]
Divide by the density d both sides
[tex]v=\frac{m}{d}[/tex]
Part 2)
we know that
The perimeter of the triangle is the sum of its three side lengths
In this problem the perimeter is equal to
[tex]P=(5w-13)+(w+6)+2(5w+15)[/tex]
so
[tex]P=(5w-13)+(2w+6)+(10w+30)[/tex]
Group terms that contain the same variable
[tex]P=(5w+2w+10w)+(-13+6+30)[/tex]
Combine like terms
[tex]P=(17w)+(23)[/tex]
[tex]P=17w+23[/tex]
solve for w
Subtract 23 both sides
[tex]P-23=17w[/tex]
Divide by 17 both sides
[tex]w=(P-23)/17[/tex]