What is the average rate of change of the function over the interval x = 0 to x = 8?

Answer:
The average rate of change is:
[tex]\frac{13}{161}[/tex]
Step-by-step explanation:
The rational function given to us is;
[tex]f(x)=\frac{3x+4}{2x+7}[/tex]
[tex]f(0)=\frac{3(0)+4}{2(0)+7}[/tex]
[tex]f(0)=\frac{4}{7}[/tex]
[tex]f(8)=\frac{3(8)+4}{2(8)+7}[/tex]
[tex]f(0)=\frac{28}{23}=1[/tex]
The average rate of change of this function from x=0 to x=8 is the slope of the secant line connecting:
(0,f(0)) and (8,f(8))
Average rate of change =[tex]=\frac{f(8)-f(0)}{8-0}[/tex]
[tex]=\frac{\frac{28}{23}-\frac{4}{7} }{8}[/tex]
[tex]=\frac{13}{161}[/tex]