Respuesta :

Answer:

[tex]sin(x) =\±\frac{\sqrt{2}}{2}[/tex]

[tex]tan(x) =\±\sqrt{2}[/tex]

Step-by-step explanation:

By definition we know that:

[tex]sin ^ 2 (x) = 1-cos ^ 2 (x)\\\\tan (x) = \frac{sin(x)}{cos (x)}[/tex]

in this case we know that

[tex]cos(x) =\frac{1}{2}[/tex]

So how:

[tex]sin ^ 2(x) = 1-cos ^ 2(x)[/tex]

Substitute the values of cosine in the function

[tex]sin ^ 2 (x) = 1-\frac{1}{2}[/tex]

[tex]sin ^ 2 (x) = \frac{1}{2}[/tex]

[tex]sin(x) =\±\sqrt{\frac{1}{2}}[/tex]

[tex]sin(x) =\±\frac{\sqrt{2}}{2}[/tex]

Then how:

[tex]tan(x) = \frac{sin(x)}{cos (x)}[/tex]

Substitute the values of sine and cosine in the function

[tex]tan(x) = \±\frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}}=\sqrt{2}[/tex]