Respuesta :

Answer: [tex]P=61.93\°[/tex]

Step-by-step explanation:

You know that:

[tex]tan\alpha=\frac{opposite}{adjacent}[/tex]

And the arctangent is:

[tex]\alpha=arctan(\frac{opposite}{adjacent})[/tex]

You can observe a right triangle in the figure.

Since you need to find the measure of the angle P, then:

[tex]\alpha=P\\opposite=15cm\\adjacent=8cm[/tex]

Knowing this, you can substitute these values into [tex]\alpha=arctan(\frac{opposite}{adjacent})[/tex]:

[tex]P=arctan(\frac{15cm}{8cm})[/tex]

Therefore, the measure of the angle P to the nearest hundreth is:

[tex]P=61.93\°[/tex]