Respuesta :

Answer:

x cannot equal -3, and x cannot equal -2

Step-by-step explanation:

Answer:

The excluded values of the rational expression are -3 and -2.

Step-by-step explanation:

If a ration function is defined as [tex]R(x)=\frac{p(x)}{q(x)}[/tex], then the excluded values of the rational function are those values for which q(x)=0.

The given rational expression is

[tex]\frac{x^2+2x-3}{x^2+5x+6}[/tex]

Factories the numerator and denominator.

[tex]\frac{x^2+3x-x-3}{x^2+3x+2x+6}[/tex]

[tex]\frac{x(x+3)-1(x+3)}{x(x+3)+2(x+3)}[/tex]

[tex]\frac{(x+3)(x-1)}{(x+3)(x+2)}[/tex]                .... (1)

Equate the denominator equal to 0.

[tex](x+3)(x+2)=0[/tex]

Using zero product property,

[tex]x+3=0\Rightarrow x=-3[/tex]

[tex]x+2=0\Rightarrow x=-2[/tex]

Therefore the excluded values of the rational expression are -3 and -2.

Cancel out the common factors of equation (1)

[tex]\frac{x - 1}{x + 2}[/tex] for (x≠-3)

It means x=-2 is vertical asymptote and x=-3 is hole.