What is the solution to the equation below?

[tex]\frac{\sqrt{3-2x} }{\sqrt{4x} } =2[/tex]

A. x = 5/6
B. x = 9/10
C. x = 1/6
D. x = 3/10

Respuesta :

Answer: OPTION C

Step-by-step explanation:

 Given the equation [tex]\frac{\sqrt{3-2x} }{\sqrt{4x} } =2[/tex], you need to solve for  the variable "x".

First, you need to multiply both sides of the equation by [tex]\sqrt{4x}[/tex]:

[tex](\frac{\sqrt{3-2x}}{\sqrt{4x}})(\sqrt{4x} })=2(\sqrt{4x} })\\\\\sqrt{3-2x}=2\sqrt{4x}[/tex]

Now you need to square both sides of the equation:

[tex](\sqrt{3-2x})^2=(2\sqrt{4x})^2\\\\3-2x=4(4x)\\\\3-2x=16x[/tex]

Subtrac 3 and 16x from both sides:

[tex]3-2x-(3)-(16x)=16x-(3)-(16x)\\\\-18x=-3\\[/tex]

Divide both sides by -18:

[tex]\frac{-18x}{-18}=\frac{-3}{-18}\\\\x=\frac{1}{6}[/tex]