BRAINLIEST!!!!
Identify the equation of the translated graph in general form

Answer:
Hyperbola:
[tex]x^2-y^2-8x+6y-1=0[/tex]
Step-by-step explanation:
the given hyperbola has equation:
[tex]x^2-y^2=8[/tex]
This is an equation of a hyperbola centered at the origin.
This hyperbola is translated so its center is now at T(4,3)
[tex](x-4)^2-(y-3)^2=8[/tex]
We expand to get:
[tex]x^2-8x+16-(y^2-6y+9)=8[/tex]
[tex]x^2-8x+16-y^2+6y-9=8[/tex]
[tex]x^2-8x-y^2+6y+7=8[/tex]
[tex]x^2-8x-y^2+6y+7-8=0[/tex]
[tex]x^2-y^2-8x+6y-1=0[/tex]