Respuesta :

Answer:

Hyperbola:

[tex]x^2-y^2-8x+6y-1=0[/tex]

Step-by-step explanation:

the given hyperbola has equation:

[tex]x^2-y^2=8[/tex]

This is an equation of a hyperbola centered at the origin.

This hyperbola is translated so its center is now at T(4,3)

[tex](x-4)^2-(y-3)^2=8[/tex]

We expand to get:

[tex]x^2-8x+16-(y^2-6y+9)=8[/tex]

[tex]x^2-8x+16-y^2+6y-9=8[/tex]

[tex]x^2-8x-y^2+6y+7=8[/tex]

[tex]x^2-8x-y^2+6y+7-8=0[/tex]

[tex]x^2-y^2-8x+6y-1=0[/tex]

Answer:

Its B

Step-by-step explanation:

it just is lol