A wall map is 45 cm high and 27 cm wide. Ashley wants to proportionately shrink it so its height is 12 cm. How wide would it be then?

Answer:
[tex]x=7\frac{1}{5}\ cm[/tex]
Step-by-step explanation:
Let
x-------> the proportional wide
we know that
Using proportion
[tex]\frac{45}{27}=\frac{12}{x}\\ \\x=27*12/45\\ \\x= 7.2\ cm[/tex]
Convert to mixed number
[tex]7.2\ cm=7+0.2=7+\frac{2}{10}=7+\frac{1}{5}=7\frac{1}{5}\ cm[/tex]
Answer: [tex] x=\ 7\dfrac{1}{5}\ cm[/tex]
Step-by-step explanation:
If there is proportional relation between two variables x and y , then we have the following equation:
[tex]\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}[/tex]
Given: A wall map is 45 cm high and 27 cm wide.
Ashley wants to proportionately shrink it so its height is 12 cm.
Let x be the width of the shrunk map.
Then by using above formula we have,
[tex]\dfrac{x}{27}=\dfrac{12}{45}\\\\\Rightarrow\ x=27\times\dfrac{12}{45}\\\\\Rightarrow x=\ 7\dfrac{1}{5}\ cm[/tex]