A function is in the form g(X) = ax^2 + d. If a is greater than 1 and d is negative, which could be the graph of g(x)?

Answer:
Option B
Step-by-step explanation:
Step-by-step explanation:
We have the function [tex]g(x)=ax^2 +d[/tex] then, by definition:
If [tex]0 <a <1[/tex] then the graph is compressed vertically by a factor a.
If [tex]|a| > 1[/tex] then the graph is stretched vertically by a factor a
If [tex]a <0[/tex] then the graph is reflected on the x axis.
If [tex]d> 0[/tex] the graph moves vertically upwards d units.
If [tex]d <0[/tex] the graph moves vertically down d units.
We know that:
[tex]a > 1[/tex] then the graph is stretched vertically by a factor a
and
[tex]d <0[/tex] the graph moves vertically down d units
The searched graph is stretched vertically and its vertex is displaced downwards
The answer is option B