Respuesta :

ANSWER

[tex]x = \frac{\pi}{6} \: or \: x = \frac{5\pi}{6} [/tex]

EXPLANATION

The given trigonometric equation is

[tex]4 \sin ^{2} x - 4 \sin(x) + 1 = 0[/tex]

This is a quadratic equation in sinx.

We split the middle term to obtain,

[tex]4 \sin ^{2} x - 2 \sin(x) - 2 \sin(x) + 1 = 0[/tex]

Factor by grouping to get,

[tex]2 \sin(x) (2 \sin(x) - 1) - 1(2 \sin(x) - 1) = 0[/tex]

This implies that,

[tex](2 \sin(x) - 1)(2 \sin(x) - 1) = 0[/tex]

[tex] \sin(x) = 0.5[/tex]

This gives us,

[tex]x = \frac{\pi}{6} [/tex]

in the first quadrant.

Or

[tex]x = \pi - \frac{\pi}{6} [/tex]

[tex]x = \frac{5\pi}{6} [/tex]

in the second quadrant.

Answer:

x = [tex]\frac{\pi}{6}[/tex], [tex]\frac{7\pi}{6}[/tex],  [tex]\frac{11\pi}{6}[/tex].

Step-by-step explanation:

The given equation is 4 sin²x - 4 sin x + 1 = 0

(2sinx)² - 2(2sinx) + 1 = 0

(2sinx - 1 )² = 0

Sinx = [tex]\frac{1}{2}[/tex] ⇒ x = sin⁻¹ ( [tex]\frac{1}{2}[/tex])

So between the interval [0, 2π] value of x will be  [tex]\frac{\pi}{6}[/tex],  [tex]\frac{7\pi}{6}[/tex],  [tex]\frac{11\pi}{6}[/tex]

[Since sine is positive in 1st 3rd and 4th quadrant]

So value of x will be x =  [tex]\frac{\pi}{6}[/tex], [tex]\frac{7\pi}{6}[/tex],  [tex]\frac{11\pi}{6}[/tex].