Respuesta :

Answer:

Part A) [tex]167\ cups[/tex]

Part B) [tex]10\ cups[/tex]

Step-by-step explanation:

Part A)

we know that

The volume of the sink is

[tex]V=\frac{2,000}{3}\pi\ in^{3}[/tex]

step 1

Find the volume of the cylindrical cup

The volume is equal to

[tex]V=\pi r^{2} h[/tex]

we have

[tex]r=2/2=1\ in[/tex] ----> the radius is half the diameter

[tex]h=4\ in[/tex]

substitute the values

[tex]V=\pi (1)^{2} (4)[/tex]

[tex]V=4\pi\ in^{3}[/tex]

step 2

To find the number of cups of water, divide the total volume of the sink by the volume of the cylindrical cup

[tex](\frac{2,000}{3}\pi)/(4\pi)=\frac{2,000}{12}=166.67\ cups[/tex]

Round to the nearest whole number

[tex]167\ cups[/tex]

Part B)

we know that

The volume of the sink is

[tex]V=\frac{2,000}{3}\pi\ in^{3}[/tex]

step 1

Find the volume of the cylindrical cup

The volume is equal to

[tex]V=\pi r^{2} h[/tex]

we have

[tex]r=6/2=3\ in[/tex] ----> the radius is half the diameter

[tex]h=8\ in[/tex]

substitute the values

[tex]V=\pi (3)^{2} (8)[/tex]

[tex]V=72\pi\ in^{3}[/tex]

step 2

To find the number of cups of water, divide the total volume of the sink by the volume of the cylindrical cup

[tex](\frac{2,000}{3}\pi)/(72\pi)=\frac{2,000}{216}=9.26\ cups[/tex]

Round to the nearest whole number (Round up)

[tex]10\ cups[/tex]