Respuesta :

Answer:

c. amplitude: 1; period: [tex]2\pi[/tex]

Step-by-step explanation:

The given function is [tex]f(t)=- \cos t[/tex]

This function is of the form;

[tex]y=A \cos Bt[/tex]

where [tex]|A|[/tex] is the amplitude.

When we compare [tex]f(t)=- \cos t[/tex] to [tex]y=A \cos Bt[/tex], we have

[tex]A=-1[/tex], therefore the amplitude of the given cosine function is [tex]|-1|=1[/tex]

The period is given by;

[tex]T=\frac{2\pi}{|B|}[/tex]

Since B=1, the period is [tex]T=\frac{2\pi}{|1|}=2\pi[/tex]

Answer:

c. amplitude: [tex]\displaystyle 1;[/tex]period: [tex]\displaystyle 2\pi[/tex]

Explanation:

[tex]\displaystyle f(t) = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{2\pi} \hookrightarrow \frac{2}{1}\pi \\ Amplitude \hookrightarrow 1[/tex]

With the above information, you now should have an idea of how to interpret graphs like this.

I am joyous to assist you at any time.