Find the amplitude and period of f(t)=1/2sin 3t

Answer: Option A
The Amplitude is
[tex]A = \frac{1}{2}[/tex]
Then the period is
[tex]\frac{2}{3}\pi[/tex]
Step-by-step explanation:
The general sine function has the following form
[tex]y = Asin(bx) + k[/tex]
Where A is the amplitude: half the vertical distance between the highest peak and the lowest peak of the wave.
[tex]\frac{2\pi}{b}[/tex] is the period: time it takes the wave to complete a cycle.
k is the vertical displacement.
In this case we have the following function
[tex]f(t)=\frac{1}{2}sin(3t)[/tex]
Thus:
[tex]b=3[/tex]
Then the period is
[tex]\frac{2\pi}{3}=\frac{2}{3}\pi[/tex]
The Amplitude is
[tex]A = \frac{1}{2}[/tex]
The answer is Option A
Answer:
a. amplitude: [tex]\displaystyle \frac{1}{2};[/tex]period: [tex]\displaystyle \frac{2}{3}\pi[/tex]
Explanation:
[tex]\displaystyle f(t) = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow \frac{2}{3}\pi \\ Amplitude \hookrightarrow \frac{1}{2}[/tex]
With the above information, you now should have an idea of how to interpret graphs like this.
I am joyous to assist you at any time.