Answer:
[tex]z=13(\cos 157\degree +i\sin157\degree)[/tex]
Step-by-step explanation:
The given complex number is
[tex]z=-12+5i[/tex]
The polar form of this complex number is;
[tex]z=r(\cos \theta +i\sin \theta)[/tex], where
[tex]r=\sqrt{(-12)^2+5^2}[/tex]
[tex]r=\sqrt{144+25}=\sqrt{169}=13[/tex]
and
[tex]\theta =\tan^{-1}(\frac{5}{-12})[/tex]
This implies that;
[tex]\theta=157\degree[/tex] to the nearest degree.
Hence the polar form is
[tex]z=13(\cos 157\degree +i\sin157\degree)[/tex]