Respuesta :

Answer:

[tex]f^{-1}(x)=\sin ^{-1}(x-\frac{\pi}{2})[/tex]

Step-by-step explanation:

The given function is

[tex]y=\frac{\pi}{2}+\sin x[/tex]

To find the inverse of this function, we interchange x and y.

[tex]x=\frac{\pi}{2}+\sin y[/tex]

we now solve for y.

[tex]x-\frac{\pi}{2}=\sin y[/tex]

Take the sine inverse of both sides to obtain;

[tex]\sin ^{-1}(x-\frac{\pi}{2})=y[/tex]

Hence the inverse of the given function is;

[tex]f^{-1}(x)=\sin ^{-1}(x-\frac{\pi}{2})[/tex]

where [tex]\frac{\pi}{2}-1\le x\le \frac{\pi}{2}+1[/tex]

Answer:

what that guy said

Step-by-step explanation: