Find the inverse of the given function.

For this case we must find the inverse of the following function:
[tex]f (x) = - \frac {1} {2} \sqrt {x + 3}[/tex]
We follow the steps below:
Replace f(x) with y:
[tex]y = -\frac {1} {2} \sqrt {x + 3}[/tex]
We exchange the variables:
[tex]x = - \frac {1} {2} \sqrt {y + 3}[/tex]
We solve for "y":
[tex]- \frac {1} {2} \sqrt {y + 3} = x[/tex]
Multiply by -2 on both sides of the equation:
[tex]\sqrt {y + 3} = - 2x[/tex]
We raise both sides of the equation to the square to eliminate the radical:
[tex](\sqrt {y + 3}) ^ 2 = (- 2x) ^ 2\\y + 3 = 4x ^ 2[/tex]
We subtract 3 from both sides of the equation:
[tex]y = 4x ^ 2-3[/tex]
We change y by f ^ {- 1} (x):
[tex]f ^ {- 1} (x) = 4x ^ 2-3[/tex]
Answer:[tex]f ^ {- 1} (x) = 4x ^ 2-3[/tex]
Answer:
[tex]f(x)^{-1}= 4x^{2} -3 [/tex] .
Step-by-step explanation:
Given : [tex]f(x) =-\frac{1}{2}\sqrt{x+3}[/tex].
To find : Find the inverse of the given function.
Solution : We have given
[tex]f(x) =-\frac{1}{2}\sqrt{x+3}[/tex].
Step 1: take f(x) = y
[tex]y =-\frac{1}{2}\sqrt{x+3}[/tex].
Step 2 : Inter change y and x.
[tex]x =-\frac{1}{2}\sqrt{y+3}[/tex].
Step 3 : Solve for y
Taking square both sides
[tex]x^{2} = \frac{1}{4}(y+3)[/tex].
On multiply both sides by 4.
[tex]4x^{2} = (y+3)[/tex].
On subtraction both sides by 3.
[tex]4x^{2} -3 = y[/tex].
Here, [tex]f(x)^{-1}= y[/tex] is inverse of f(x)
[tex]f(x)^{-1}= 4x^{2} -3 [/tex] .
Therefore, [tex]f(x)^{-1}= 4x^{2} -3 [/tex] .