Respuesta :

For this case we must find the inverse of the following function:

[tex]f (x) = - \frac {1} {2} \sqrt {x + 3}[/tex]

We follow the steps below:

Replace f(x) with y:

[tex]y = -\frac {1} {2} \sqrt {x + 3}[/tex]

We exchange the variables:

[tex]x = - \frac {1} {2} \sqrt {y + 3}[/tex]

We solve for "y":

[tex]- \frac {1} {2} \sqrt {y + 3} = x[/tex]

Multiply by -2 on both sides of the equation:

[tex]\sqrt {y + 3} = - 2x[/tex]

We raise both sides of the equation to the square to eliminate the radical:

[tex](\sqrt {y + 3}) ^ 2 = (- 2x) ^ 2\\y + 3 = 4x ^ 2[/tex]

We subtract 3 from both sides of the equation:

[tex]y = 4x ^ 2-3[/tex]

We change y by f ^ {- 1} (x):

[tex]f ^ {- 1} (x) = 4x ^ 2-3[/tex]

Answer:[tex]f ^ {- 1} (x) = 4x ^ 2-3[/tex]

Answer:

[tex]f(x)^{-1}= 4x^{2} -3 [/tex] .

Step-by-step explanation:

Given : [tex]f(x) =-\frac{1}{2}\sqrt{x+3}[/tex].

To find : Find the inverse of the given function.

Solution : We have given

[tex]f(x) =-\frac{1}{2}\sqrt{x+3}[/tex].

Step 1: take f(x) = y

[tex]y =-\frac{1}{2}\sqrt{x+3}[/tex].

Step 2 : Inter change y and x.

[tex]x =-\frac{1}{2}\sqrt{y+3}[/tex].

Step 3 : Solve for y

Taking square both sides

[tex]x^{2} = \frac{1}{4}(y+3)[/tex].

On multiply both sides by 4.

[tex]4x^{2} = (y+3)[/tex].

On subtraction both sides by 3.

[tex]4x^{2} -3 = y[/tex].

Here, [tex]f(x)^{-1}= y[/tex] is inverse of f(x)

[tex]f(x)^{-1}= 4x^{2} -3 [/tex] .

Therefore, [tex]f(x)^{-1}= 4x^{2} -3 [/tex] .