Respuesta :

Answer:

[tex]f^{-1}(x)=\cos^{-1} x+\frac{\pi}{2}[/tex]

Step-by-step explanation:

The given function is

[tex]y=\cos(x-\frac{\pi}{2})[/tex]

To find the inverse of this function, we interchange x and y.

[tex]x=\cos(y-\frac{\pi}{2})[/tex]

Take the inverse cosine of both sides to obtain;

[tex]\cos^{-1} x=y-\frac{\pi}{2}[/tex]

[tex]\cos^{-1} x+\frac{\pi}{2}=y[/tex]

Therefore the inverse of the given cosine function is;

[tex]f^{-1}(x)=\cos^{-1} x+\frac{\pi}{2}[/tex] where [tex]-1\le x\le 1[/tex]

Ver imagen kudzordzifrancis

Answer:

the answer is B

y=tanx- pie/2