Respuesta :
Answer:
-2; 16
Step-by-step explanation:
Rewrite the equation [tex]x^2-14x+31=63[/tex] as:
[tex]x^2-14x+31-63=0\\ \\x^2-14x-32=0[/tex]
Now use the quadratic formula:
[tex]D=b^2-4ac\\ \\D=(-14)^2-4\cdot 1\cdot (-32)\ \ [a=1,\ b=-14,\ c=-32]\\ \\D=196+128=324=18^2[/tex]
Now
[tex]x_{1,2}=\dfrac{-b\pm\sqrt{D}}{2a}\\ \\x_{1,2}=\dfrac{-(-14)\pm\sqrt{18^2}}{2\cdot 1}=\dfrac{14\pm18}{2}=\dfrac{-4}{2},\ \dfrac{32}{2}=-2,\ 16[/tex]
Answer:
x = 16 or x = -2
Step-by-step explanation:
Points to remember
Solution of a quadratic equation ax² + bx + = 0 is given by
x = [-b ± √(b² - 4ac) ]/2a
To find the solution of equation
We have x² - 14x + 31 = 63
x² - 14x + 31 - 63 = 0
x² - 14x - 32 = 0
a = 1, b = -14 and c = 32
x = [-b ± √(b² - 4ac) ]/2a
= x = [- -14 ± √((-14)² - 4*1 * (-32)) ]/2*1
= [14 ± √324]/2
x = -2 or x = 16