Respuesta :

Answer:

see explanation

Step-by-step explanation:

sinA = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{BC}{AB}[/tex], thus

sinA = [tex]\frac{2\sqrt{19} }{20}[/tex] = [tex]\frac{\sqrt{19} }{10}[/tex]

--------------------------------------------------------------------------------------------

cosA = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex], thus

cosA = [tex]\frac{18}{20}[/tex] = [tex]\frac{9}{10}[/tex]

-------------------------------------------------------------------------------------------

tanA = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{BC}{AC}[/tex], thus

tanA = [tex]\frac{2\sqrt{19} }{18}[/tex] = [tex]\frac{\sqrt{19} }{9}[/tex]