contestada

Calculate the mass defect and the binding energy/nucleon of the nuclide^9 4 Be, which has a mass of 9.012 182 24 amu. The mass of a proton is 1.007 276 47 amu and the mass of a neutron is 1.008 664 90. One amu = 1.6605 x 10^-27 kg and the speed of light is 3.00 x 10^8 m/s.

Calculate the mass defect and the binding energynucleon of the nuclide9 4 Be which has a mass of 9012 182 24 amu The mass of a proton is 1007 276 47 amu and the class=

Respuesta :

Answer:

m(94Be) = 9.012 182 24 amuN(protons) = 4N(neutrons) = 9 – 4 = 5m(protons) = (4 protons) (1.007 276 47 amu/proton) = 4.029 105 88 amum(neutrons) = (5 neutrons) (1.008 664 90 amu/neutron) = 5.043 324 50 amum(protons) + m(neutrons) = 4.029 105 88 amu + 5.043 324 50 amu = 9.072 430 38 amuMass defect m = 9.072 430 38 amu – 9.012 182 24 amu = 0.060 248 14 amum = (0.060 248 14 amu/nucleus) (1.6605 10-27kg/amu) = 1.0004 10-28 kg/nucleusE =mc2= (1.0004 10-28 kg/nucleus) (3.00 108m/s)2= 9.0038 10-12J/nucleusN(nucleons)= N(protons)+N(neutrons) = 9E =(9.0038 10-12J/nucleus) (1 nucleus/9nucleons) =1.0004 10-12J/nucleon2.

The mass defect is 0.059 948 14 amu and the Binding energy/nucleon of the nuclide is  9.66 × 10⁻¹² J/nucleon.

How to find the Mass defect ?

It is expressed as

[tex]\Delta M = (Zm_{P} + Nm_{n}) - M_{A}[/tex]

where

[tex]\Delta M[/tex] = Mass defect

[tex]M_{A}[/tex] = Mass of nucleus

[tex]m_{P}[/tex] = mass of proton

[tex]m_{n}[/tex] = mass of electron

Z = Number of proton

N = Number of neutrons

Now put the values in above formula we get

[tex]\Delta M = (Zm_{P} + Nm_{n}) - M_{A}[/tex]

[tex]\Delta M = 4(m_{p}) + 5 (m_{n}) - M_{A}[/tex]

       = 4 (1.007 276 47 amu) + 5 (1.008 664 90 amu) - 9.012 182 24 amu

       = 4.029 105 88 amu + 5.043 324 50 amu - 9.012 182 24 amu

       = 9.072 130 38 amu - 9.012 182 24 amu

       = 0.059 948 14 amu

What is Binding energy/Nucleon ?

It is expressed as

ΔE = Δmc²

where

ΔE = Binding energy

ΔM = change in mass

c = speed of light

Now put the values in above formula we get

ΔE = Δmc²

     = (0.59 984 14 amu) (1.6605 × 10⁻²⁷ kg/amu)  (3 × 10⁸) (m/s)²

Nucleons = 8.96 × 10⁻¹¹

Binding energy/nucleon = 9.66 × 10⁻¹² J/nucleon

Thus from the above conclusion we can say that The mass defect is 0.059 948 14 amu and the Binding energy/nucleon of the nuclide is  9.66 × 10⁻¹² J/nucleon.

Learn more about the Binding energy here: https://brainly.com/question/23020604

#SPJ2