A right triangle △ABC with right angle C is inscribed in a circle. Find the radius of this circle if: Given m∠C = 90°, k(O, r) inscribed in △ABC, AC = 8 cm, BC = 6 cm. Find r.

Respuesta :

Answer:

The radius is [tex]r=5\ cm[/tex]

Step-by-step explanation:

we know that

The inscribed angle is half that of the arc it comprises.

so

[tex]m<C =(1/2)[arc\ AB][/tex]

[tex]m<C =90\°[/tex]

substitute

[tex]90\°=(1/2)[arc\ AB][/tex]

[tex]arc\ AB=180\°[/tex]

That means----> The length side AB of the inscribed triangle is a diameter of the circle

Applying Pythagoras Theorem

Calculate the length side AB

[tex]AB^{2}=AC^{2}+BC^{2}[/tex]

[tex]AB^{2}=8^{2}+6^{2}[/tex]

[tex]AB^{2}=100[/tex]

[tex]AB=10\ cm[/tex] -----> is the diameter

Find the radius

[tex]r=10/2=5\ cm[/tex] -----> the radius is half the diameter