contestada

which expression is equivalent to (4 sqrt of 6)/(cube root of 2)?
a - (12 sqrt of 27)/2
b - (4 sqrt of 24)/2
c- (12 sqrt of 55296)/2
(12 sqrt of 177147)/3

Respuesta :

For this case we must find an expression equivalent to:

[tex]\frac{4\sqrt{6}}{\sqrt[3]{2}}[/tex]

We multiply by:

[tex](\frac{(\sqrt[3]{2})^2}{(\sqrt[3]{2})^2})\\\frac{4\sqrt{6}}{\sqrt[3]{2}}*(\frac{(\sqrt[3]{2})^2}{(\sqrt[3]{2})^2})=[/tex]

By definition of multiplication of powers of the same base we have:

[tex]a^n*a^m=a^{m+n}\\\frac{4\sqrt{6}*(\sqrt[3]{2})^2}{(\sqrt[3]{2})^3}=\\\frac{4\sqrt{6}*(\sqrt[3]{2})^2}{2}=[/tex]

Move the exponent within the radical:

[tex]\frac{4\sqrt{6}*\sqrt[3]{2^2}}{2}=\\\frac{4\sqrt{6}*\sqrt[3]{4}}{2}=[/tex]

We rewrite:

[tex]4^{\frac{1}{3}}=4^{\frac{2}{6}}=\sqrt[6]{4^2}\\6^{\frac{1}{2}}=6^{\frac{3}{6}}=\sqrt[6]{6^3}[/tex]

Rewriting the expression:

[tex]\frac{4\sqrt[6]{4^2}\sqrt[6]{6^3}}{2}=\\\frac{4\sqrt[6]{16*216}}{2}=\\\frac{4\sqrt[6]{3456}}{2}=\\\frac{4\sqrt[6]{2^6*54}}{2}=\\\frac{8\sqrt[6]{54}}{2}=\\4\sqrt[6]{54}[/tex]

Answer:

[tex]4\sqrt[6]{54}[/tex]

Answer:

A!!!!

12^sqrt 27/ 2

Step-by-step explanation: