Given: ​ △ABC ​ with side lengths a, b, and c, and height h

Prove: ​ Area=1/2 ab sin C ​

Triangle A B C has sides a b c. A vertical dashed line extends from angle B perpendicular to side b.

Drag and drop the statements into the boxes to correctly complete the proof.

Statement: Reason
​ △ABC ​ with side lengths a, b, and c, and height h: Given
: Triangle area formula
​​ : Definition of sine
asinC=h: Multiplication Property of Equality
Area=1/2 ba sin C: Substitution Property
: Commutative Property of Multiplication

Options
Area = 1/2 ab sin C
Area = 1/2 bh
Area = 1/2 ah
sin C = h/a
sin C = h/b

Respuesta :

Answer with explanation:

Given: In △ABC ​ with side lengths a, b, and c, and height h, a vertical line extends from angle B perpendicular to side b.

To prove:→ Area(ΔABC)

                              [tex]=\frac{1}{2}\times ab \sin C[/tex]

Proof:

In △ABC ​ with side lengths a, b, and c, and height h ,

Area of ΔABC

                  [tex]=\frac{1}{2}\times {\text{Base} \times {\text{height}[/tex]

Let perpendicular from angle , B on the side AC cuts AC at M.

   Definition of sine

[tex]\sin {\text{theta}}=\frac{\text{Perpendicular}}{\text{Hypotenuse}}\\\\\sin C=\frac{BM}{BC}\\\\ \sin C=\frac{h}{a}\\\\h=a\sin C[/tex]

Area of Triangle ΔABC

                  [tex]=\frac{1}{2}\times b \times h\\\\=\frac{1}{2}\times b \times a \times \sin C[/tex]

                           -----Using Substitution Property,that is , h=a sin C

→Area = 1/2 b h          

Ver imagen Аноним

Answer:

h/c, csin(B), 1/2acsin(B)

Step-by-step explanation:

it is correct on edge 2020, don't listen to the other guy.