Respuesta :
Answer:
Step-by-step explanation:
This is a geometric sequence. The general formula for any term is
t_n = a*r^(n-1)
t1 = 3
r = 3
t_n = 3* 3^(n - 1)
t_4 should be 81
t_4 = 3*3^(n - 1)
t_4 = 3*3^3
t_4 = 3 * 27
t_4 = 81
Answer:
an = 3 * (3)^ (n-1) or
an = 3^n
Step-by-step explanation:
To find the common ratio, take the second term and divide by the first term
9/3 = 3
To verify take the third term and divide by the second
27/9 =3
Since this is a geometric sequence, it is of the form
an = a1*r^(n-1) where a1 is the first term and r is the common ration
an = 3 * (3)^ (n-1)
Since the first term is the same as the term inside the parentheses, we can combine
an = 3^1 * 3 ^ (n-1)
= 3^ (1+n-1)
= 3^ (n)