Respuesta :

Answer:

The number could be [tex]x=-6[/tex]  or [tex]x=-1/3[/tex]

Step-by-step explanation:

Let

x-----> the number

Remember that

The reciprocal of a number is 1 divided by the number

we know that

[tex]x+2(\frac{1}{x})=-\frac{19}{3}[/tex]

Solve for x

Multiply by 3x both sides

[tex]3x^{2} +6=-19x\\ \\ 3x^{2}+19x+6=0[/tex]

Solve the quadratic equation by graphing

The solutions are [tex]x=-6, x=-1/3[/tex]

see the attached figure

Verify both solutions

For [tex]x=-6[/tex]

[tex]-6+2(-\frac{1}{6})=-\frac{19}{3}[/tex]

[tex]-\frac{19}{3}=-\frac{19}{3}[/tex] ----> is true

For [tex]x=-1/3[/tex]

[tex]-(1/3)+2(\frac{1}{(-1/3)})=-\frac{19}{3}[/tex]

[tex]-\frac{19}{3}=-\frac{19}{3}[/tex] ----> is true

Ver imagen calculista