Respuesta :

Answer:  [tex](f/g)(x)=\frac{2x}{x+5}[/tex]

Step-by-step explanation:

Given the function f(x):

[tex]f(x)=4x^2+6x[/tex]

And the function g(x):

[tex]g(x)=2x^2+13x+15[/tex]

To find [tex](f/g)(x)[/tex] you need to divide the function f(x) by the function g(x).

Therefore, knowing this, you get:

[tex](f/g)(x)=\frac{4x^2+6x}{2x^2+13x+15}[/tex]

You can simplify the numerator by factoring out 2x:

[tex](f/g)(x)=\frac{2x(2x+3)}{2x^2+13x+15}[/tex]

 You have to simplify the denominator:

 Rewrite the term 13x as a sum of two terms whose product be 30:  

[tex](f/g)(x)=\frac{2x(2x+3)}{2x^2+(10+ 3)x+15}[/tex]

Apply Distributive property:

[tex](f/g)(x)=\frac{2x(2x+3)}{2x^2+10x+ 3x+15}[/tex]

Make two groups of two terms:

[tex](f/g)(x)=\frac{2x(2x+3)}{(2x^2+10x)+ (3x+15)}[/tex]

Factor out 2x from the first group and 3 from the second group:

[tex](f/g)(x)=\frac{2x(2x+3)}{(2x(x+5))+ 3(x+5)}[/tex]

Factor out (x+5):

[tex](f/g)(x)=\frac{2x(2x+3)}{(2x+3)(x+5)}[/tex]

Simplifying, you get:

[tex](f/g)(x)=\frac{2x}{x+5}[/tex]

ANSWER

[tex]( \frac{f}{g} )(x) = \frac{2x }{x + 5}[/tex]

where

[tex]x \ne - \frac{3}{2} \: or \: x = - 5[/tex]

EXPLANATION

The given functions are:

[tex]f(x) = 4 {x}^{2} + 6x[/tex]

and

[tex]g(x) =2 {x}^{2} + 13x + 15[/tex]

We want to find ,

[tex]( \frac{f}{g} )(x) = \frac{f(x)}{g(x)} [/tex]

[tex]( \frac{f}{g} )(x) = \frac{4 {x}^{2} + 6x }{2 {x}^{2} + 13x + 15} [/tex]

[tex]( \frac{f}{g} )(x) = \frac{2x(2x + 3) }{2{x}^{2} + 10x +3x + 15} [/tex]

[tex]( \frac{f}{g} )(x) = \frac{2x(2x + 3) }{2{x}(x + 5) +3(x + 5)} [/tex]

[tex]( \frac{f}{g} )(x) = \frac{2x(2x + 3) }{(2x + 3)(x + 5)} [/tex]

We cancel out the common factors to get:

[tex]( \frac{f}{g} )(x) = \frac{2x }{x + 5} [/tex]

where

[tex]x \ne - \frac{3}{2} \: or \: x = - 5[/tex]