Respuesta :

ANSWER

When x=1, [tex]y =2{x}^{2} [/tex] is 2

and [tex]y = {2}^{x} [/tex] is 2

When x=2, [tex]y =2{x}^{2} [/tex] is 8

and [tex]y = {2}^{x} [/tex] is 4

EXPLANATION

The given functions are:

[tex]y =2{x}^{2} [/tex]

and

[tex]y = {2}^{x} [/tex]

We want to find the functional values for the given x-values.

When x=1,

[tex]y = 2( {1})^{2} = 2[/tex]

and

[tex]y = {2}^{1} = 2[/tex]

When x=2,

The first function gives us:

[tex]y = 2 {(2)}^{2} = 8[/tex]

and the second function gives

[tex]y = {2}^{2} = 4[/tex]

Answer:

For the function [tex]y=2x^2[/tex]:

[tex]y=0\\y=2\\y=8[/tex]

For the second function [tex]y=2^x[/tex]:

 [tex]y=1\\y=2\\y=4[/tex]

Step-by-step explanation:

You only need to make the following substitution:

For the first function [tex]y=2x^2[/tex]:

When [tex]x=0[/tex]

[tex]y=2x^2\\ y=2(0)^2\\ y=0[/tex]

When [tex]x=1[/tex]

[tex]y=2(1)^2\\ y=2(1)^2\\ y=2[/tex]

When [tex]x=2[/tex]

[tex]y=2x^2\\ y=2(2)^2\\ y=2*4\\ y=8[/tex]

For the second function [tex]y=2^x[/tex]:

When [tex]x=0[/tex]

[tex]y=2^x\\ y=2^0\\ y=1[/tex]

When [tex]x=1[/tex]

[tex]y=2^x\\ y=2^1\\ y=2[/tex]

When [tex]x=2[/tex]

[tex]y=2^x\\y=2^2\\ y=2^2\\ y=4[/tex]