Respuesta :

Answer:

Part A) The perimeter of the court is [tex]P=139.25\ ft[/tex]

Part B) [tex]5\ cans[/tex]

Step-by-step explanation:

Part A) we know that

The perimeter of the court is equal to the perimeter of the square plus the perimeter of semicircle

[tex]P=4D+\frac{\pi D }{2}[/tex]

we have that

[tex]D=25\ ft[/tex]

substitute

[tex]P=4(25)+\frac{(3.14*25)}{2}[/tex]

[tex]P=139.25\ ft[/tex]

Part B)

Find the area above the foul line (labelled II)

The area of a semicircle is equal to

[tex]A=\frac{\pi r^{2}}{2}[/tex]

we have

[tex]r=25/2=12.5\ ft[/tex]

substitute

[tex]A=\frac{(3.14)(12.5)^{2}}{2}[/tex]

[tex]A=245.31\ ft^{2}[/tex]

Round to the nearest whole number

[tex]A=245\ ft^{2}[/tex]

One can of paint covers 50 square feet of floor

so

Calculate how many cans of blue paint does the school need to purchase

[tex]245/50=4.9\ cans[/tex]

Round up

[tex]5\ cans[/tex]