I need help with the math problem

Answer:
Part A) The perimeter of the court is [tex]P=139.25\ ft[/tex]
Part B) [tex]5\ cans[/tex]
Step-by-step explanation:
Part A) we know that
The perimeter of the court is equal to the perimeter of the square plus the perimeter of semicircle
[tex]P=4D+\frac{\pi D }{2}[/tex]
we have that
[tex]D=25\ ft[/tex]
substitute
[tex]P=4(25)+\frac{(3.14*25)}{2}[/tex]
[tex]P=139.25\ ft[/tex]
Part B)
Find the area above the foul line (labelled II)
The area of a semicircle is equal to
[tex]A=\frac{\pi r^{2}}{2}[/tex]
we have
[tex]r=25/2=12.5\ ft[/tex]
substitute
[tex]A=\frac{(3.14)(12.5)^{2}}{2}[/tex]
[tex]A=245.31\ ft^{2}[/tex]
Round to the nearest whole number
[tex]A=245\ ft^{2}[/tex]
One can of paint covers 50 square feet of floor
so
Calculate how many cans of blue paint does the school need to purchase
[tex]245/50=4.9\ cans[/tex]
Round up
[tex]5\ cans[/tex]