Respuesta :

Answer:

A. 49 feet

B. 66 feet (round to the nearest foot)

C. 4 seg

Step-by-step explanation:

A. What is the height of the ball after 3 seconds?

For [tex]t=3 seg[/tex]

[tex]h(3)=-16(3)^{2} +63(3)+4[/tex]

[tex]h(3)=-144+189+4\\h(3)=-144+193\\h(3)=49 feet[/tex]

B. What is the maximum height of the ball? round to the nearest foot

[tex]h(t)=-16(t)^{2} +63(t)+4\\h'(t)=-32(t) +63\\[/tex]

then

[tex]-32(t)+63=0\\t=\frac{-63}{-32}\\t=1.969seg[/tex]

For [tex]t=1.969seg[/tex]

[tex]h(1.969)=-16(1.969)^{2}+63(1.969)+4\\h(1.969)= 66.016\\h(1.969)=66 feet[/tex]

C. When will the ball hit the ground?

The ball will hit the ground when [tex]h(t)=0[/tex]

so, [tex]-16t^{2} +63(t)+4=0[/tex]

Using the quadratic equation

[tex]t=4seg[/tex]