Respuesta :

frika

Answer:

D

Step-by-step explanation:

1. Use property of exponents:

[tex](a^b)^c=a^b\cdot ... \cdot a^b\ [\text{ take }c \text{ times } a^b][/tex]

Hence

[tex](7^{\frac{1}{3}})^3=7^{\frac{1}{3}}\cdot 7^{\frac{1}{3}}\cdot 7^{\frac{1}{3}}[/tex]

2. Use multiplication property of exponents:

[tex]a^b\cdot a^c=a^{b+c}[/tex]

Thus,

[tex]7^{\frac{1}{3}}\cdot 7^{\frac{1}{3}}\cdot 7^{\frac{1}{3}}=7^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}[/tex]

3. Since

[tex]\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1,[/tex]

we have that

[tex]7^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=7^1=7[/tex]