Respuesta :

Answer:

C

Step-by-step explanation:

Using the rules of exponents

• [tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]

• [tex]a^{-m}[/tex] ⇔ [tex]\frac{1}{a^{m} }[/tex]

Hence

[tex]7^{-5/6-7/6}[/tex] = [tex]7^{-\frac{12}{6} }[/tex] = [tex]7^{-2}[/tex], then

[tex]7^{-2}[/tex] = [tex]\frac{1}{7^{2} }[/tex] = [tex]\frac{1}{49}[/tex] → C

ANSWER

C. 1/49

EXPLANATION

The given expression is

[tex] {7}^{ - \frac{5}{6} } \times {7}^{ - \frac{7}{6} } [/tex]

Recall that:

[tex] {a}^{m} \times {a}^{n} = {a}^{m + n} [/tex]

We apply this product rule of exponents to get:

[tex] {7}^{ - \frac{5}{6} } \times {7}^{ - \frac{7}{6} } = {7}^{ - \frac{5}{6} + - \frac{7}{6} } [/tex]

This implies that:

[tex] {7}^{ - \frac{5}{6} } \times {7}^{ - \frac{7}{6} } = {7}^{ - \frac{12}{6} } [/tex]

[tex]{7}^{ - \frac{5}{6} } \times {7}^{ - \frac{7}{6} } = {7}^{ - 2} [/tex]

Recall again that:

[tex] {a}^{ - m} = \frac{1}{ {a}^{m} } [/tex]

We apply this rule to get:

[tex]{7}^{ - \frac{5}{6} } \times {7}^{ - \frac{7}{6} } = \frac{1}{ {7}^{2} } [/tex]

This simplifies to:

[tex]{7}^{ - \frac{5}{6} } \times {7}^{ - \frac{7}{6} } = \frac{1}{49} [/tex]