Respuesta :
Answer:
see explanation
Step-by-step explanation:
Using the rule of logarithms
• [tex]log_{b}[/tex] x = n ⇔ x = [tex]b^{n}[/tex]
Hence
with b = 4 and n = - 2
[tex]log_{4}[/tex] [tex]\frac{1}{16}[/tex] = - 2, then
[tex]\frac{1}{16}[/tex] = [tex]4^{-2}[/tex] ← in exponential form
ANSWER
The exponential form is
[tex] \frac{1}{16} = {4}^{ - 2} [/tex]
EXPLANATION
The given logarithm is
[tex] log_{4}( \frac{1}{16} ) = - 2[/tex]
We want to write the given logarithm in exponential form:
We take the antilogarithm of both sides to obtain:
[tex] {4}^{log_{4}( \frac{1}{16} )} = {4}^{ - 2} [/tex]
We simplify the left hand side to obtain:
[tex] \frac{1}{16} = {4}^{ - 2} [/tex]
Hence the exponential form is
[tex] \frac{1}{16} = {4}^{ - 2} [/tex]