Rewrite The following expression.

Answer:
Choice A is correct
Step-by-step explanation:
We have been given the expression;
[tex]x^{\frac{9}{7} }[/tex]
In order to re-write this expression, we shall use some laws of exponents;
[tex]a^{\frac{b}{c} }=(a^{b})^{\frac{1}{c} }[/tex]
Using this law, the expression can be written as;
[tex](x^{9})^{\frac{1}{7}}[/tex]
The next thing we need to remember is that;
[tex]a^{\frac{1}{n} }=\sqrt[n]{a}[/tex]
Therefore, the expression becomes;
[tex]\sqrt[7]{x^{9} }[/tex]
Next,
[tex]x^{9}=x^{7}*x^{2}[/tex]
This implies that;
[tex]\sqrt[7]{x^{9} }=\sqrt[7]{x^{7}*x^{2}}\\=\sqrt[7]{x^{7} }*\sqrt[7]{x^{2} } \\=x\sqrt[7]{x^{2} }[/tex]
ANSWER
A.
[tex]x \sqrt[7]{{x}^{2} } .[/tex]
EXPLANATION
The given expression is
[tex] {x}^{ \frac{9}{7} } [/tex]
We want to rewrite the given expression in radical form:
Recall that:
[tex] {a}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } [/tex]
This implies that:
[tex] {x}^{ \frac{9}{7} } = \sqrt[7]{ {x}^{9} } [/tex]
[tex]{x}^{ \frac{9}{7} } = \sqrt[7]{ {x}^{7} \times {x}^{2} } [/tex]
Split the radicals.
[tex]{x}^{ \frac{9}{7} } = \sqrt[7]{ {x}^{7} } \times \sqrt[7]{{x}^{2} } [/tex]
This finally simplifies to:
[tex]{x}^{ \frac{9}{7} }=x \sqrt[7]{{x}^{2} } [/tex]
The correct answer is A.