What is all of the surface area and volume of this Castle? Find the surface area and volume of all the figures below, then out of all of the surface areas and volumes together. Explain your work and round your final answers to the nearest tenth.

Answer:
Step-by-step explanation:
There are a few formulas that are useful for this:
You will notice that for lateral area purposes, a pyramid or cone is equivalent to a prism or cylinder of height equal to half the slant height. And for volume purposes, the volume of a pyramid or cone is equal to the volume of a prism or cylinder with the same base area and 1/3 the height.
Since the measurements are given in cm, we will use cm for linear dimensions, cm^2 for area, and cm^3 for volume.
___
The heights of the cones at the top of the towers can be found from the Pythagorean theorem.
(slant height)^2 = (height)^2 + (radius)^2
height = √((slant height)^2 - (radius)^2) = √(10^2 -5^2) = √75 = 5√3
The heights of the pyramids can be found the same way.
height = √(13^2 -2^2) = √165
___
Area
The total area of the castle will be ...
total castle area = castle lateral area + castle base area
These pieces of the total area are made up of sums of their own:
castle lateral area = cone lateral area + pyramid lateral area + cylinder lateral area + cutout prism lateral area
and ...
castle base area = cylinder base area + cutout prism base area
So, the pieces of area we need to find are ...
Here we go ...
Based on the above discussion, we can add 1/2 the slant height of the cone to the height of the cylinder and figure the lateral area of both at once:
area of one cone and cylinder = π·10·(18 +10/2) = 230π
area of cylinder with no cone = top area + lateral area = π·1^2 +π·2·16 = 33π
area of one pyramid = 4·4·(13/2) = 52
The cutout prism outside face area is equivalent to the product of its base perimeter and its height, less the area of the rectangular cutouts at the top of the front and back, plus the area of the inside faces (both vertical and horizontal).
outside face area = 2((23+4)·11 -3·(23-8)) = 2(297 -45) = 504
inside face area = (3 +(23-8) +3)·4 = 84
So the lateral area of the castle is ...
castle lateral area = 2(230π + 52) +33π + 504 + 84 = 493π +692
≈ 2240.805 . . . . cm^2
The castle base area is the area of the 23×4 rectangle plus the areas of the three cylinder bases:
cylinder base area = 2(π·5^2) + π·1^2 = 51π
prism base area = 23·4 = 92
castle base area = 51π + 92 ≈ 252.221 . . . . cm^2
Total castle area = (2240.805 +252.221) cm^2 ≈ 2493.0 cm^2
___
Volume
The total castle volume will be ...
total castle volume = castle cylinder volume + castle cone volume + castle pyramid volume + cutout prism volume
As we discussed above, we can combine the cone and cylinder volumes by using 1/3 the height of the cone.
volume of one castle cylinder and cone = π(5^2)(18 + (5√3)/3)
= 450π +125π/√3 ≈ 1640.442 . . . . cm^3
volume of flat-top cylinder = π·1^2·16 = 16π ≈ 50.265 . . . . cm^3
The volume of one pyramid is ...
(1/2)4^2·√165 = 8√165 ≈ 102.762 . . . . cm^3
The volume of the entire (non-cut-out) castle prism is the product of its base area and height:
non-cutout prism volume = (23·4)·11 = 1012 . . . . cm^3
The volume of the cutout is similarly the product of its dimensions:
cutout volume = (23 -8)·4·3 = 180 . . . . cm^3
so, the volume of the cutout prism is ...
cutout prism volume = non-cutout prism volume - cutout volume
= 1012 -180 = 832 . . . . cm^3
Then the total castle volume is ...
total castle volume = 2·(volume of one cylinder and cone) + (volume of flat-top cylinder) +2·(volume of one pyramid) +(cutout prism volume)
= 2(1640.442) + 50.265 +2(102.762) +832 ≈ 4368.7 . . . . cm^3