Respuesta :

f(x) = x³ – 2x² – x + 2

 

 0 = x3 – 2x2 – x + 2

 (x-2)(x-1)(x+1)=0

 x1=-1

 x2=1

 x3=2

For this case we must follow the steps below:

We factor the polynomial, starting by factoring the maximum common denominator of each group:

[tex]x ^ 2 (x-2) - (x-2)[/tex]

We factor the maximum common denominator[tex](x-2):[/tex]

[tex](x-2) (x ^ 2-1)[/tex]

Now, by definition of perfect squares we have:

[tex]a ^ 2-b ^ 2 = (a + b) (a-b)[/tex]

Where:

[tex]a = x\\b = 1[/tex]

Now, we can rewrite the polynomial as:

[tex](x-2) (x + 1) (x-1)[/tex]

To find the roots we equate to 0:

[tex](x-2) (x + 1) (x-1) = 0[/tex]

So, the roots are:

[tex]x_ {1} = 2\\x_ {2} = - 1\\x_ {3} = 1[/tex]

Answer:

[tex]x_ {1} = 2\\x_ {2} = - 1\\x_ {3} = 1[/tex]